Некоторые аспекты технологий IP-телефонии

Передача голосовых/факсимильных сообщений с использованием транспортных протоколов TCP/IP приобретает сегодня всё большую популярность. Рассказывать обо всех достоинствах и недостатках IP (или Интернет) — телефонии нет большого смысла. Материалы этой статьи прежде всего рассчитаны на читателя, уже имеющего представление о технологиях VoIP, и затрагивают те особенности IP-телефонии, которые пока не были достаточно освещены.

Стартовые затраты начинающего оператора IP-телефонии, действующего на территории РФ в большинстве случаев составляют:

  1. Стоимость лицензии Министерства Связи РФ на право предоставления услуг "Пакетно-речевой передачи информации" — 1%
  2. Стоимость основного и вспомогательного оборудования, необходимого для организации услуг — 35%
  3. Стоимость организации канала для связи с VoIP сетью компании-партнёра — 40%.
  4. Подключение к городской телефонной сети — 15%
  5. Вступительный взнос компании партнёру за включение в сеть — 8%

Значительную часть стартовых капиталовложений, помимо стоимости оборудования, составляют затраты на организацию канала для обеспечения соединения шлюзов. Ниже будет неоднократно фигурировать термин "межшлюзовое соединение", под которым подразумевается как выделенный канал (Clear Channel), так и сеть Интернет. Следует однако заметить, что каналы Интернет, по своей природе, не гарантируют постоянства параметров IP-соединения. Кроме того, такие каналы часто вообще не обладают сколько-нибудь приемлемыми параметрами для передачи речевого трафика в реальном времени. Потому в условиях конкуренции на рынке телекоммуникаций оказание услуг связи с негарантированным качеством, по мнению автора, может серьезно подорвать авторитет начинающего оператора/провайдера.

Чаще всего, деятельность по предоставлению услуг IP-телефонии строится по схеме: Местный (начинающий) ITSP + иностранная компания "Партнёр". Местный оператор в большинстве случаев способен терминировать (направлять в ТфОП) входящий к нему телефонный трафик по одному или двум направлениям, чаще всего там, где он находится территориально (например, только в городские телефонные сети Петербурга и Москвы). В то же время иностранный партнёр имеет возможность распределять трафик по всему миру или обладает шлюзами к другим операторам, которые способны это осуществить. Как вы думаете, кто при этом диктует условия и является хозяином положения?!! Позволю предположить, что иностранный партнёр :). Потому при подключении шлюза или сети шлюзов в 90% случаев местному ITSP приходится быть подчинённым членом сети иностранного Партнёра. Как говорится: You are members of our network! :)

Выделенный канал — вынужденная необходимость?!

Перед началом обмена коммерческим трафиком сеть начинающего оператора IP-телефонии будет проходить тестирование для определения качества терминации телефонных вызовов и процента их успешного завершения. От результатов тестирования зависит стоимость терминации трафика через данную сеть. Успех этой процедуры определяется двумя факторами: способом организации подключения к коммутируемой Телефонной сети Общего Пользования ТфОП и качеством связующего IP-канала между шлюзами. По личному опыту замечу, что требования иностранных компаний операторов к задержке и пропускной способности сети подключающегося оператора достаточно высоки. Например, известная компания-оператор IP-телефонии ITXC высказывает следующие пожелания к качеству сети подключающегося партнёра:

  1. Пропускная способность IP-канала — минимум 360 Кбит/с (при терминации трафика в ТфОП по одному тракту Е1 PRI)
  2. Постоянное выделенное соединение с фиксированным IP-адресом (ну это само — собой :) )
  3. Round–Trip Latency — Задержка сигнала в IP-канале при его прохождении в оба конца — менее 400 мс, то есть менее 200 мс при прохождении сигнала в одном направлении.
  4. Потери IP-пакетов не более 7% от общего числа в моменты пиковой загрузки канала.
  5. PDD — Post Dial Delay — время завершения вызова — 10 секунд с момента набора последней цифры и получения ответного тонального сигнала от вызываемого абонента
  6. Завершение вызовов должно быть сопоставимо или выше с завершением вызовов в традиционной коммутируемой телефонной сети.

Кроме вышеперечисленных, ITXC выдвигает также ряд требований, касающихся типов и конфигурации используемого оборудования, биллинговой системы, доступности сети для удалённого мониторинга.

Тем, кто хотя бы однажды запускал со своего компьютера команды PING или TRACERT, полагаю, не требуется объяснять, что обеспечить IP-канал с приведёнными характеристиками и достаточной безопасностью, используя инфраструктуру Публичного Интернет, в большинстве случаев затруднительно. Если компания дорожит своим авторитетом и собирается укреплять свои позиции на рынке IP-телефонии, то вполне обоснованным решением будет организация выделенного канала n´ 64 Кбит/с для включения в IP-сеть Партнёра.

Построение выделенного канала n´ 64 Кбит/с длительный и дорогой процесс. Затраты при этом напрямую связаны с его пропускной способностью и, отчасти, с географической протяжённостью. Тем важнее для начинающего оператора последующее эффективное использование этого канала. Эффективность использования IP-канала во многом определяется объёмом пропущенного через него трафика. Применительно к IP-телефонии можно говорить о максимально возможном числе одновременных телефонных соединений. На сегодняшний день существует большое число способов, методик и рекомендаций, касающихся расчёта пропускной способности канала в зависимости от различных факторов и характеристик используемого оборудования. Часть из них присутствует в упомянутых мной выше материалах, часть можно найти на www.iptelephony.org/frame/technology.html или на www.iLocus.com .

Кодеки — это не только ценный мех :) !

Одним из важных факторов эффективного использования пропускной способности IP-канала, является выбор оптимального алгоритма кодирования/декодирования речевой информации — кодека.

Все существующие сегодня типы речевых кодеков по принципу действия можно разделить на три группы:

  1. Кодеки с Импульсно Кодовой Модуляцией (ИКМ) и Адаптивной Дифференциальной Импульсно Кодовой Модуляцией (АДИКМ), появившиеся в конце 50 –х годов и использующиеся сегодня в системах традиционной телефонии. В большинстве случаев, представляют собой сочетание АЦП/ЦАП
  2. Кодеки с вокодерным преобразованием речевого сигнала возникли в системах мобильной связи для снижения требований к пропускной способности радиотракта. Эта группа кодеков использует гармонический синтез сигнала на основании информации о его вокальных составляющих – фонемах. В большинстве случаев, такие кодеки реализованы как аналоговые устройства.
  3. Комбинированные (гибридные) кодеки сочетают в себе технологию вокодерного преобразования/синтеза речи, но оперируют уже с цифровым сигналом посредством специализированных DSP. Кодеки этого типа содержат в себе ИКМ или АДИКМ кодек и реализованный цифровым способом вокодер.

На рисунке 1 представлена усреднённая субъективная оценка качества кодирования речи для вышеперечисленных типов кодеков.


Рис. 1

В голосовых шлюзах IP-телефонии понятие кодека подразумевает не только алгоритмы кодирования/декодирования, но и их аппаратную реализацию. Большинство кодеков, используемых в IP-телефонии, описаны рекомендациями семейства "G" стандарта Н.323. Детальное рассмотрение теоретических аспектов построения речевых кодеков представлено достаточно широко, и тому, кто серьёзно интересуется данной тематикой, рекомендую посмотреть материалы на www-mobile.ecs.soton.ac.uk/papers/papers.html.

Рассмотрим некоторые основные кодеки, используемые в шлюзах IP-телефонии операторского уровня.

G.711

Рекомендация, утверждённая МККТТ в 1984 г., описывает кодек, использующий ИКМ преобразование аналогового сигнала с точностью 8 бит, тактовой частотой 8 Кгц и простейшей компрессией амплитуды сигнала. Скорость потока данных на выходе преобразователя составляет 64 Кбит/с (8 Бит ´ 8 КГц). Для снижения шума квантования и улучшения преобразования сигналов с небольшой амплитудой, при кодировании используется нелинейное квантование по уровню (см. рис. 2) согласно специальному псевдо — логарифмическому закону A или m — Law ( cie.motor.ru/Topics/127.html.)


Рис. 2

Первые ИКМ кодеки с нелинейным квантованием появились уже в 60-х гг. Кодек G.711 широко распространён в системах традиционной телефонии с коммутацией каналов. Несмотря на то, что рекомендация G.711 в стандарте Н.323 является основной и первичной, в шлюзах IP-телефонии данный кодек применяется редко из-за высоких требований к полосе пропускания и задержкам в канале передачи (всё-таки 64 Кбит/с это много). Использование G.711 в системах IP-телефонии обосновано лишь в тех случаях, когда требуется обеспечить максимальное качество кодирования речевой информации при небольшом числе одновременных разговоров. Одним из примеров применения кодека G.711 могут послужить IP-телефоны компании CISCO.

G.723.1

Рекомендация G.723.1 описывает гибридные кодеки, использующие технологию кодирования речевой информации, сокращённо называемую — MP-MLQ (Multy-Pulse — Multy Level Quantization — Множественная Импульсная, Многоуровневая Квантизация), данные кодеки можно охарактеризовать, как комбинацию АЦП/ЦАП и вокодера. Как уже упоминалось выше, своим возникновением гибридные кодеки обязаны системам мобильной связи. Применение вокодера позволяет снизить скорость передачи данных в канале, что принципиально важно для эффективного использования как радиотракта, так и IP-канала. Основной принцип работы вокодера — синтез исходного речевого сигнала посредством адаптивной замены его гармонических составляющих соответствующим набором частотных фонем и согласованными шумовыми коэффициентами. Кодек G.723 осуществляет преобразование аналогового сигнала в поток данных со скоростью 64 Кбит/с (ИКМ), а затем при помощи многополосного цифрового фильтра/вокодера выделяет частотные фонемы, анализирует их и передаёт по IP-каналу информацию только о текущем состоянии фонем в речевом сигнале. Данный алгоритм преобразования позволяет снизить скорость кодированной информации до 5,3 — 6,3 Кбит/с без видимого ухудшения качества речи. Структурная схема кодека приведена на рисунке 3. Кодек имеет две скорости и два варианта кодирования: 6,3 Кбит/с с алгоритмом MP-MLQ и 5,3 Кбит/с с алгоритмом CELP. Первый вариант предназначен для сетей с пакетной передачей голоса и обеспечивает лучшее качество кодирования по сравнению с вариантом CELP, но менее адаптирован к использованию в сетях со смешанным типом трафика (голос/данные).


Рис. 3

Процесс преобразования требует от DSP 16,4 — 16,7 MIPS (Million Instructions Per Second) и вносит задержку 37 мс. Кодек G.723.1 широко применяется в голосовых шлюзах и прочих устройствах IP-телефонии. Кодек уступает по качеству кодирования речи кодеку G.729а, но менее требователен к ресурсам процессора и пропускной способности канала.

Гибридные кодеки G.729

Семейство включает кодеки G.729, G.729 Annex А, G.729 Annex B (содержит VAD и генератор комфортного шума). Кодеки G.729 сокращенно называют CS-ACELP Conjugate Structure — Algebraic Code Excited Linear Prediction — Сопряжённая структура с управляемым алгебраическим кодом линейным предсказанием. Процесс преобразования использует 21,5 MIPS и вносит задержку 15 мс. Скорость кодированного речевого сигнала составляет 8 Кбит/с. В устройствах VoIP данный кодек занимает лидирующее положение, обеспечивая наилучшее качество кодирования речевой информации при достаточно высокой компрессии.

G.726

Рекомендация G.726 описывает технологию кодирования с использованием Адаптивной Дифференциальной Импульсно-Кодовой Модуляции (АДИКМ) со скоростями: 32 Кбит/с, 24 Kбит/с, 16 Kбит/с. Процесс преобразования не вносит существенной задержки и требует от DSP 5,5 — 6,4 MIPS. Структурная схема кодека приведена на рисунке 4.


Рис. 4

Кодек может применяться совместно с кодеком G.711 для снижения скорости кодирования последнего. Кодек предназначен для использования в системах видеоконференций.

G.728

Гибридный кодек, описанный в рекомендации G.728 в 1992 г, относится к категории LD-CELP — Low Delay — Code Excited Linear Prediction — Кодек с управляемым кодом линейным предсказанием и малой задержкой. Кодек обеспечивает скорость преобразования 16 Кбит/с, вносит задержку при кодировании от 3 до 5 мс и предназначен для использования в системах видеоконференций. В устройствах IP-телефонии данный кодек применяется достаточно редко. Подробнее о G.728 можно узнать на www.ecs.soton.ac.uk.

В сводной таблице 1 представлены характеристики кодеков семейства Н.323

Таблица 1
Кодек Тип кодека Скорость кодирования Задержка при кодировании
G.711 ИКМ 64 Кбит/с 0,75 мс
G.726 АДИКМ 32 Кбит/с 1 мс
G.728 LD — CELP 16 Кбит/с От 3 до 5 мс
G.729 CS — ACELP 8 Кбит/с 10 мс
G.726 a CS — ACELP 8 Кбит/с 10 мс
G.723.1 MP — MLQ 6,3 Кбит/с 30 мс
G.723.1 ACELP 5,3 Кбит/с 30 мс

NetCoderТМ

Компания AudioCodes, приложившая в своё время немало усилий по созданию кодека G.723.1 специально для использования в сетях IP-телефонии, предлагает свою новую разработку — кодек NetCoder. По словам AudioCodes, кодек обладает качеством превосходящим популярные кодеки G.723.1 и G.729 и не требует значительных вычислительных ресурсов. Однако, производители голосовых шлюзов пока не торопятся поддерживать данное творение в своих продуктах. Не включен этот кодек также и в семейство кодеков стандарта Н.323. Использовать сегодня NetCoder в голосовых шлюзах можно не без риска потери совместимости с шлюзами других производителей, установленных в сети. Кодек NetCoder работает в диапазоне скоростей 4,8–9,6 Кбит/с, при формировании кадра вносит задержку 20 мс и имеет встроенный механизм оптимальной трансляции речевых пауз, основанный на технологии порогового детектирования голосовой активности VAD и автоматическую регулировку скорости передачи.

Что такое VAD?

Технология VAD (упоминалась в www.ixbt.com/comm/ip-tele-troubles.html) используется совместно с большим числом речевых кодеков. Попытаюсь кратко проиллюстрировать механизм VAD на простейшем примере (см. рис. 5). Входной аналоговый сигнал поступает на вход устройства сравнения, в котором измеряется его амплитуда и сравнивается с заданным пороговым значением. При превышении амплитудой входного сигнала заданного порога (красная линия на рис. 5), сигнал поступает на вход кодека и кодируется по определённому алгоритму (интервал Т2 — Т3). Если амплитуда входного сигнала ниже порогового значения (например в интервал Т1 – Т2), то в момент времени Т1 передаётся только служебная информация (длиной в несколько бит) о начале паузы, а в момент Т2 о её окончании. На приёмной стороне, во время паузы, для улучшения субъективного восприятия кодированной речи может передаваться комфортный шум. Ниже я ещё дополнительно рассмотрю особенности применения технологии VAD.


рис. 5

А какой кодек лучше?!

Вопрос оценки качества кодирования голоса с использованием различных кодеков возник сразу же с момента их появления. При этом речь не ведётся об измерении коэффициента нелинейных и интермодуляционных искажений и отношения сигнал/шум, как это принято для оценки тракта звуковоспроизводящей аппаратуры. Специфика использования речевого кодека позволяет оперировать такой характеристикой как Усреднённое Совокупное Мнение (MOS — Mean Opinion Score). Компания CISCO Systems приводит результаты тестирования кодеков по критерию наилучшей разборчивости речи. Оценка кодеков произведена по традиционной 5-ти бальной шкале, где наилучшему качеству звучания соответствует наибольший бал. Результаты представлены в таблице 2.

Таблица 2
Кодек Тип кодека Скорость кодирования Размер кадра Оценка
G.711 ИКМ 64 Кбит/с 0,125 мс 4,1
G.726 АДИКМ 32 Кбит/с 0,125 мс 3,85
G.728 LD — CELP 16 Кбит/с 0,625 мс 3,61
G.729 CS — ACELP (без VAD) 8 Кбит/с 10 мс 3,92
G.729 2-х кратное кодирование 8 Кбит/с 10 мс 3,27
G.729 3-х кратное кодирование 8 Кбит/с 10 мс 2,68
G.729a CS — ACELP 8 Кбит/с 10 мс 3,7
G.723.1 MP — MLQ 6,3 Кбит/с 30 мс 3,9
G.723.1 ACELP 5,3 Кбит/с 30 мс 3,65
Net Coder ? 4,8 — 9,6 Кбит/с 20 мс *

* — Компания AudioCodes совместно с независимой испытательной лабораторией COMSAT провела сравнительное тестирование кодека Net Coder и кодеков G.711, G.723.1, G.729a для различных уровней речевого сигнала. Результаты тестирования представлены на рисунке 6.

рис. 6

Пропускная способность IP-канала

Определение необходимой пропускной способности межшлюзового канала — одна из важнейших задач оператора при построении им сети IP-телефонии. Скорость передачи данных в таком канале будет складываться из нескольких компонент. На рисунке 7 приведена общая структура взаимодействия устройств в рамках стандарта Н.323.


рис. 7

Из рисунка 7 видно, что помимо кодированных голосовых или факсимильных сообщений, управляемых Транспортным Протоколом Реального времени (RTP), в сети c использованием протоколов взаимодействия, отраженные в рекомендации Н.225, передаётся информация о состоянии телефонной сигнализации Q.931 и информация о состоянии шлюза RAS (Registration Admission Status).

На рисунке 8 приведена иерархическая структура, отражающая взаимодействие протоколов верхнего уровня TCP и UDP и компонент Н.323 (выделены красным) с протоколом межсетевого взаимодействия — IP.


Рис. 8

Основные фазы межшлюзового взаимодействия под управлением гейткипера Н.323 для телефонного вызова, поступившего из телефонной сети на вход шлюза "А", с вызовом, направленным на абонента, подключенного к шлюзу "Б", приведены на рисунке 9.


Рис. 9

Сложность реализации иерархической многопротокольной структуры H.323 побудила некоторых производителей поддерживать и развивать одновременно с Н.323 альтернативные протоколы взаимодействия IP-шлюзов. Это, к примеру, Nuera, Komode, Mediatrix и Ericsson с протоколом SIP (Session Initial Protocol), CISCO Systems с протоколами MGCP (Media Gateway Control Protocol) и SGCP (Simple Gateway Control Protocol), а так же некоторые другие. Несмотря на определённые преимущества альтернативных протоколов, набор рекомендаций Н.323 продолжает оставаться стандартом де-факто, потому претерпевает модернизации и дополнения, выражающиеся в различных версиях и фазах разработки.

Влияние задержек в сети IP/H.323

Сети с коммутацией пакетов были созданы для передачи данных, и возможность их использования для передачи голосового или факсимильного трафика в реальном времени, по аналогии с традиционной телефонией, в значительной степени зависит от вносимой ими при прохождении сигнала задержки. На рисунке 10 представлена схема сети VoIP и возникающие при этом задержки.


рис. 10

Важно отметить тот факт, что задержки в сетях с коммутацией пакетов влияют не только на качество передачи речевого трафика в реальном времени. Не менее важно и то, что данные задержки в определённых ситуациях могут нарушить правильность функционирования телефонной сигнализации в цифровых трактах Е1/Т1 на стыке голосовых шлюзов с оборудованием коммутируемых телефонных сетей. Причиной этого можно назвать тот факт, что набор рекомендаций Н.323 в момент своего появления в 1997 г. был ориентирован на мультимедийные приложения, осуществляющие аудио и видео конференцсвязь через сети IP. Данное решение позволяло значительно снизить стоимость таких систем по сравнению с их аналогами, работающими в сетях традиционной телефонии с коммутацией каналов. В процессе выделения IP-телефонии в самостоятельное направление и развития её до услуги операторского уровня, возникла необходимость соединения IP-шлюзов с телефонными станциями ТфОП по цифровым трактам Е1/Т1. При этом, шлюзы осуществляют взаимодействие с цифровыми АТС, используя стандартные механизмы телефонной сигнализации Q.931, интерпретированные через команды Н.225 и транслируемые в IP-сети с использованием протокола TCP. Согласно рекомендации Q.931, при установлении телефонного соединения значения временных задержек между фазами выполнения команд сигнализации строго регламентированы. Однако, при интерпретации в IP-шлюзах команд телефонной сигнализации Q.931 стеком Н.225/ТСР/IP, задержки, возникшие на пути прохождения сигнала увеличивают заданные временные интервалы между командами Q.931, и в большинстве случаев нарушают целостность функционирования данного протокола. Хотя версия 2 набора рекомендаций Н.323 в фазе 2 предусматривает процедуру Н.323v2 Fast Connect, ускоряющую обработку команд Q.931 стеком Н.225/ТСР, задержки IP-канала, особенно характерные для инфраструктуры Интернет, могут заведомо превышать все допустимые значения временных интервалов протокола Q.931. Данное обстоятельство можно расценивать как ещё один аргумент в пользу использования выделенных каналов при построении сетей IP-телефонии.

Clarent Bandwidth Calculator

Для упрощения расчёта предположительной скорости передачи данных для межшлюзовых IP-каналов при передаче голосовых и факсимильных сообщений, компанией-производителем VoIP оборудования Clarent разработана программа Clarent Bandwidth Calculator (внешний вид интерфейса которой приведён на рисунке 11).


рис. 11

Результаты расчёта приводятся для локальной сети и для интерфейсов WAN. Исходными данными являются: тип используемого кодека, число одновременных разговоров, заданное значение порога детектора голосовой активности, а также зарезервированная полоса пропускания. Результаты представляются в значениях Кбит/с. В разделе Complex приводятся результаты расчёта при использовании разработанной компанией Clarent технологии оптимального сжатия информации. В разделе Simplex представлены расчётные значения для обычного шлюза для IP-телефонии под Н.323. Ниже приводятся результаты расчётов с использованием Clarent Bandwidth Calculator проделанные автором для обычного IP-шлюза при различных сочетаниях параметров.

Зависимость пропускной способности канала WAN от типа кодека и числа одновременных разговоров

Расчёты проводились для 30-ти канального голосового шлюза, работающего под управлением гейткипера Н.323 и включённого в телефонную сеть по цифровому тракту Е1 PRI. Пропускная способность канала WAN полностью доступна для телефонного трафика и не имеет резерва. Уровень срабатывания детектора голосовой активности — 30% от максимальной амплитуды сигнала. В сети используется процедура RAS, определяющая взаимодействие шлюзов и гейткипера. На рисунке 12 приведены результаты скорости передачи данных в канале WAN в зависимости от различного числа одновременных разговоров с использованием кодеков: G.723.1 Low, G.723.1 High, G.729а, NetCoder. Результаты расчётов произведены для случая статического нарастания числа входящих/исходящих вызовов. Следует помнить, что при передаче реального трафика в многоканальном IP-шлюзе число одновременных разговоров постоянно изменяется, что приводит к колебаниям скорости информационного потока.


рис. 12

Анализируя графики, приведённые на рисунке 12, интересно отметить, что:

  • При статическом увеличении числа соединений прирост скорости передачи данных через межшлюзовый канал имеет линейный характер
  • кодек NetCoder, работающий на скорости 4,8 Кбит/с требует от канала большей пропускной способности чем кодек G.723.1 (5,3 — 6,3 Кбит/с). По мнению автора, это может быть вызвано тем, что кодек NetCoder не включён в число кодеков стандарта Н.323, потому при использовании голосового шлюза с NetCoder в сети Н.323 возникает необходимость непрерывной передачи дополнительной информации, идентифицирующей данный шлюз как устройство с нестандартным протоколом.
  • Кодеки NetCoder, работающие со скоростью 8 Кбит/с и G.729 Annex A, абсолютно идентичны в своих скоростных характеристиках, что позволяет сделать предположение о схожести их алгоритмов кодирования. И хотя разработчик кодека NetCoder компания Audio Codes не приводит информации о его структуре, можно с определённой уверенностью предположить, что NetCoder — разновидность CELP возможно даже взаимно совместимая с G.729.

Включаем VAD…

Требования к пропускной способности межшлюзового канала сети Н.323, в зависимости от типа используемого кодека и заданного порога детектора голосовой активности, приведены на рисунке 13.


Рис. 13

Предполагаемая скорость передачи данных в IP-канале в зависимости от заданного порога детектора голосовой активности, при использовании кодека G.711, приведена на рисунке 14


Рис. 14

Передача факсов через IP

Впервые ITU-T опубликовал протокол взаимодействия аналоговых факсимильных аппаратов в 1980 г. Факсимильные аппараты, поддерживающие его, получили название факсимильных аппаратов Группы 3. Протокол состоит из нескольких частей, которые отражают различные стадии процедуры передачи факсов. Сообщения, согласно протоколу Группы 3, передаются при помощи сформированной аналоговыми модемами модулированной несущей через обычную телефонную сеть. При этом скорость передачи образа документа может составлять 64 Кбит/с.

Процедура управления сессией описана ITU-T в спецификации Т.30, а процедура передачи образа документа в спецификации Т.4. Спецификация Т.30 разделяет процесс передачи факсимильного сообщения на пять фаз:

Фаза А — Набор номера, установление соединения

Фаза В — Взаимная идентификация факсимильных аппаратов и выбор скорости

Фаза С — Передача образа документа

Фаза D — Сверка числа страниц, завершение передачи

Фаза Е — Разрыв соединения

Согласно спецификации Т.4, передача образа документа в самой простой своей реализации, представляет собой процедуру синхронной блочной передачи файла формата TIFF-F в виде потока бит с использованием преобразования Гауфмана при помощи модемов. В конце каждого блока следует специальный символ — EOL (end of line). В конце последнего блока на странице символ EOL повторяется шесть раз.

Опыт современных компаний-операторов телефонной связи показывает, что передача факсимильных сообщений через каналы междугородней и международной связи — достаточно востребованная пользователями услуга и выгодный бизнес. Несмотря на это, трансляция факсов через сеть IP изначально не была отражена ITU-T в стандарте Н.323. Объясняется это, скорее, не забывчивостью ITU, а изначальной ориентацией стандарта на мультимедийные приложения. Лишь в 1998 г., во второй версии Н.323, спецификация Т.38 вводит понятие технологии Fax Relay, предназначенной для передачи факсимильных сообщений в режиме реального времени. В основе Fax Relay лежит имитация со стороны IP-шлюза относительно факсимильного аппарата полностью прозрачной среды передачи, с сохранением всех фаз вызова отражённых в спецификациях Группы 3.

Практическая реализация услуги FoIP присутствует во всех современных IP-шлюзах операторского уровня. Однако совместимость шлюзов различных производителей при передаче факсимильного трафика часто оказывается под вопросом. Конкретная реализация механизма Т.38 в оборудовании того или иного производителя является закрытой информацией! В отличии от VoIP, информацию о FoIP приходится собирать по крохам :(.

Представление о технологии Fax Relay Т.38, можно составить по ряду публикаций (www.vocal.com/data_sheets/t38.html, www.pluscom.ru/general/library/VoIP/index.html), включая также издания ITU-T предназначенные для свободного распространения. Особый интерес представляет информация компании CISCO Systems о реализации Т.38 Fax Relay в производимых ею шлюзах IP-телефонии. Согласно CISCO Systems, после установления соединения с IP-шлюзом и передачи информации о номере вызываемого абонента (Фаза А) происходит попытка вызывающего факсимильного аппарата соединится с вызываемым факсимильным аппаратом и установить параметры скорости соединения (Фаза В), при этом голосовые шлюзы на приёмном и передающем концах детектируют, перехватывают и транслируют в сторону соединённых с ними через телефонную сеть факсимильных аппаратов стандартные сообщения спецификации Т.30, в которых задают скорость соединения от 2,4 до 14,4 Кбит/с. Таким образом, при использовании Fax Relay отпадает необходимость кодировать и передавать через канал IP аналоговую несущую (фазы В и D), так как между шлюзами сообщения Т.30, распознанные детекторами, передаются под управлением протокола Н.245, а при передаче образа документа (Фаза С) применяется кодирование со скоростями 2,4–14,4 Кбит/с. Следует заметить, что процесс передачи образа документа предъявляет определённые требования к фазовым искажениям сигнала и задержкам в тракте передачи, а также задержкам при кодировании/декодировании. По этой причине, преобразование факсимильного сигнала с использованием гибридных речевых кодеков использующих технологии CELP, MP-MLQ и т.п. неэффективно. Для кодирования факсимильного сигнала наиболее подходящими будут кодеки ИКМ. Потому, среди кодеков, реализованных в современных шлюзах IP-телефонии всегда присутствуют ИКМ кодеки. Процесс передачи образа документа через пакетную сеть, как непрерывного синхронного потока данных, осуществляется с использованием протокола UDP и дополнительных технологических приёмов, среди которых:

  • Избыточное кодирование и коды с коррекцией ошибки.
  • Повторная трансляция потерянных или испорченных блоков информации и пакетов.
  • Буферизация принимаемых данных

На рисунке 15 приведены результаты расчёта скорости передачи данных в IP-канале для различного числа одновременных вызовов при использовании технологии Т.38 Fax Relay.


Рис. 15

PCM Switchover

Весьма интересной выглядит сходная с Т.38 Fax Relay технология передачи данных через IP-шлюз с использованием обычных аналоговых модемов, получившая название PCM Switchover. При детектировании шлюзом сигнала несущей аналогового модема, в момент фазы передачи данных, для него со стороны шлюза создаётся полностью прозрачное IP-соединение с использованием ИКМ кодека G.711 64 Кбит/с. Пользователь, имея модем V.90 и качественное подключение к местному оператору IP-телефонии, установившему шлюз с поддержкой PCM Switchover, может получить соединение, аналогичное по скорости выделенному каналу 64 Кбит/с.

Выводы

  1. Скорость передачи данных и пропускная способность IP-канала в сети под Н.323 не могут быть определены исходя только из значений скорости кодирования используемых кодеков и числа одновременных разговоров, а зависят также от числа запросов абонентов на соединение в текущий момент времени, структуры IP-пакета, установленного порога детектора голосовой активности, способов авторизации пользователей, количества гейткиперов, работающих в сети, и многих других факторов.
  2. Обобщая приведённые выше расчёты, наиболее интересным для организации сети начинающего ITSP будет выделенный канал с пропускной способностью равной 256 Кбит/с и шлюз с одним подключением к коммутируемой телефонной сети по цифровому тракту Е1.
  3. При планировании и построении сети IP-телефонии, оператору имеет смысл заранее решить для себя, какое качество услуги будет интересно его потенциальному абоненту. Исходя из этого, можно определить инфраструктуру сети, подыскивать партнёра по терминации и оригинации трафика, а также уяснить состав оборудования, тип подключения шлюза к телефонной сети.

При этом:

  1. Для операторов, строящих сети с использованием выделенных каналов n´ 64 Кбит/с, можно рекомендовать использование в шлюзе речевых кодеков G.729a (8 Кбит/с) или G.723.1 (6,3 Кбит/с), а в отдельных случаях G.711. При передаче факсимильных сообщений целесообразно включить поддержку технологии Т.38 Fax Relay со скоростями вплоть до 14,4 Кбит/с. Абонентам, желающим пользоваться голосовыми модемами для передачи данных, при наличии в шлюзе такой возможности, имеет смысл включить поддержку сервиса PCM Switchover и ввести отдельный тарифный план.
  2. В IP-шлюзах, которые установлены в сетях, базирующихся на инфраструктуре Публичного Интернет, целесообразно применение кодеков G.723.1, G.729b, а при наличии возможности и желания, можно поэкспериментировать с кодеком NetCoder. Скорость передачи факсимильных сообщений с использованием Т.38 Fax Relay следует ограничить до 9,6 Кбит/с.
  3. Использование в голосовом шлюзе технологии VAD приводит к экономии полосы пропускания при некотором ухудшении разборчивости речи. К сожалению, сегодня не все голосовые шлюзы позволяют регулировать порог срабатывания детектора голосовой активности и в ряде устройств порог имеет фиксированное значение, выбранное, исходя из особенностей речи англоязычных пользователей, и равное 30%.
  4. Хотя технология Fax Relay Т.38 сегодня является признанным стандартом систем FoIP, шлюзы разных производителей, поддерживающие Т.38 FAX Relay, не всегда совместимы между собой. Причиной этой несовместимости, по мнению автора, является неоднозначность способов передачи образа документа, заложенная в самой рекомендации Т.38. Поэтому начинающему оператору при выборе оборудования IP-телефонии нужно заранее выяснить тип и характеристики оборудования установленного в сети предполагаемого Партнёра.

Получите бесплатную консультацию

Мы очень любим общаться и не жалеем на это времени.
Напишите нам - задайте интересующий Вас вопрос, поделитесь идеей.
Мы постараемся ответить Вам как можно быстрее.
Каждое сообщение директор читает лично.